Effects of transient PTH on early proliferation, apoptosis, and subsequent differentiation of osteoblast in primary osteoblast cultures.

نویسندگان

  • Yu-Hsiung Wang
  • Yaling Liu
  • David W Rowe
چکیده

In primary calvarial osteoblast cultures derived from transgenic mice expressing green fluorescent protein (GFP) under the control of 3.6-kb Col1a1 promoter, the emergence of GFP signal marks the transition of multipotential osteoprogenitors into preosteoblasts. Early transient treatment (days 1-7) of these cultures with parathyroid hormone (PTH) has an anabolic effect that is not associated with an increase in total DNA content or cell number in day 21 cultures. In the present study, the effect of early PTH treatment on cell proliferation and apoptosis was examined in greater detail in GFP(+) and GFP(-) cells using flow cytometry. In preconfluent cultures, PTH significantly reduced the proportion of cells in S phase but increased those in G(0)/G(1) and G(2)+M phases in both GFP(+) and GFP(-) subpopulations. PTH decreased apoptosis only in GFP(-) but not GFP(+) cells, indicating an increased survival of GFP(-) cells. In contrast, PTH did not change the amounts of cell proliferation and apoptosis seen in either compartment after these cultures reached confluence. To further assess the effect of early PTH treatment on osteogenic differentiation, secondary cultures of sorted GFP(+) or GFP(-) cells were obtained from day 7 primary cultures that had been treated for 1 wk with PTH. This treatment resulted in larger areas of GFP expression accompanied by increased xylenol orange/von Kossa staining in the secondary cultures of GFP fractions. Early transient PTH treatment appears to enhance the commitment of progenitor cells to an osteogenic fate and results in a higher proportion of cells that achieve full osteoblast differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parathyroid hormone [PTH(1-34)] and parathyroid hormone-related protein [PTHrP(1-34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells.

The effects of parathyroid hormone/parathyroid hormone-related protein (PTH/PTHrP) on late events in chondrocyte differentiation were investigated by a dual in vitro model where conditions of suspension versus adhesion culturing are permissive either for apoptosis or for the further differentiation of hypertrophic chondrocytes to osteoblast- like cells. Chick embryo hypertrophic chondrocytes ma...

متن کامل

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

Parathyroid hormone regulates fates of murine osteoblast precursors in vivo.

Teriparatide, a recombinant form of parathyroid hormone (PTH), is the only approved treatment for osteoporosis that increases the rate of bone formation. Teriparatide increases osteoblast numbers by suppressing osteoblast apoptosis and activating bone-lining cells. No direct evidence for teriparatide's actions on early cells of the osteoblast lineage has been demonstrated. Here, we have employe...

متن کامل

The Effects of Iron Oxide Nanoparticle on Differentiation of Human Mesenchymal Stem Cells to Osteoblast

Introduction: IIron oxide nanoparticles (IO NP) have an increasing number of biomedical applications. To date, the potential cytotoxicity of these particles remains an issue of debate. Little is known about the cellular interaction or toxic effects of IO NP on differentiation of stem cells. The aim of the present study was to investigate the possible toxic role of different doses of IO NP in di...

متن کامل

Synergistic effects of high dietary calcium and exogenous parathyroid hormone in promoting osteoblastic bone formation in mice

In the present study, we investigated whether high dietary Ca and exogenous parathyroid hormone 1-34 fragments (PTH 1-34) have synergistic effects on bone formation in adult mice, and explored the related mechanisms. Adult male mice were fed a normal diet, a high-Ca diet, a PTH-treated diet, or a high-Ca diet combined with subcutaneously injected PTH 1-34 (80 μg/kg per d) for 4 weeks. Bone mine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 292 2  شماره 

صفحات  -

تاریخ انتشار 2007